GSFC Space Science Mission Operations (SSMO) and Space Weather

Rick Harman
Space Science Mission Operations
SSMO Spacecraft

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch Year</th>
<th>MOC Location</th>
<th>Mission Director</th>
<th>Science Type</th>
<th># s/c</th>
<th>Orbit Regime</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>1997</td>
<td>GSFC</td>
<td>B. Pumphrey</td>
<td>Heliophysics</td>
<td>1</td>
<td>L1</td>
<td>N/A</td>
</tr>
<tr>
<td>AIM</td>
<td>2007</td>
<td>LASP</td>
<td>O. Cuevas</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td>31304</td>
</tr>
<tr>
<td>ARTEMIS*</td>
<td>2007</td>
<td>UC Berkeley</td>
<td>G. Marr</td>
<td>Heliophysics</td>
<td>2</td>
<td>P1, lunar orbit; P2, Lunar Lagrange Point 1</td>
<td>30581, 30582</td>
</tr>
<tr>
<td>Fermi</td>
<td>2008</td>
<td>GSFC</td>
<td>B. Pumphrey</td>
<td>Astrophysics</td>
<td>1</td>
<td>LEO</td>
<td>33053</td>
</tr>
<tr>
<td>IBEX</td>
<td>2008</td>
<td>Orbital</td>
<td>O. Cuevas</td>
<td>Heliophysics</td>
<td>1</td>
<td>HEO (T = 9 days)</td>
<td>33401</td>
</tr>
<tr>
<td>IRIS</td>
<td>2013</td>
<td>ARC</td>
<td>D. Knapp</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td></td>
</tr>
<tr>
<td>LRO</td>
<td>2009</td>
<td>GSFC</td>
<td>S. Odendahl</td>
<td>Planetary (Lunar)</td>
<td>1</td>
<td>Lunar Orbit</td>
<td>N/A</td>
</tr>
<tr>
<td>Van Allen</td>
<td>2012</td>
<td>APL</td>
<td>D. Quinn</td>
<td>Geospace / Heliophysics</td>
<td>2</td>
<td>HEO</td>
<td>38752, 38753</td>
</tr>
<tr>
<td>RHESSI</td>
<td>2002</td>
<td>UC Berkeley</td>
<td>D. Knapp</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td>27370</td>
</tr>
<tr>
<td>SDO</td>
<td>2010</td>
<td>GSFC</td>
<td>D. Fink</td>
<td>Heliophysics</td>
<td>1</td>
<td>GEO</td>
<td>36395</td>
</tr>
<tr>
<td>SOHO***</td>
<td>1995</td>
<td>GSFC</td>
<td>D. Quinn</td>
<td>Heliophysics</td>
<td>1</td>
<td>L1</td>
<td>n/a</td>
</tr>
<tr>
<td>STEREO</td>
<td>2006</td>
<td>APL</td>
<td>D. Quinn</td>
<td>Heliophysics</td>
<td>2</td>
<td>Heliocentric</td>
<td>n/a</td>
</tr>
<tr>
<td>Swift</td>
<td>2004</td>
<td>Penn State</td>
<td>B. Pumphrey</td>
<td>Astrophysics</td>
<td>1</td>
<td>LEO</td>
<td>28485</td>
</tr>
<tr>
<td>THEMIS</td>
<td>2007</td>
<td>UC Berkeley</td>
<td>D. Knapp</td>
<td>Heliophysics</td>
<td>3</td>
<td>HEO</td>
<td>305880, 30584, 30585</td>
</tr>
<tr>
<td>TIMED</td>
<td>2001</td>
<td>APL</td>
<td>D. Quinn</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td>26998</td>
</tr>
<tr>
<td>WIND</td>
<td>1994</td>
<td>GSFC</td>
<td>O. Cuevas</td>
<td>Heliophysics</td>
<td>1</td>
<td>L1</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* ARTEMIS is a bifurcation of the THEMIS extended mission.

*** SOHO is a cooperative program between ESA and NASA.
<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch Year</th>
<th>MOC Location</th>
<th>Mission Director</th>
<th>Science Type</th>
<th># s/c</th>
<th>Orbit Regime</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAVEN</td>
<td>2013</td>
<td>Lockheed, Littleton, CO</td>
<td>J. Nagy</td>
<td>Planetary</td>
<td>1</td>
<td>Mars</td>
<td>N/A</td>
</tr>
<tr>
<td>MMS</td>
<td>2015</td>
<td>GSFC</td>
<td>M. Woodard</td>
<td>Geospace / Heliophysics</td>
<td>4</td>
<td>HEO</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Future SSMO Mission

<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch Year</th>
<th>MOC Location</th>
<th>Mission Director</th>
<th>Science Type</th>
<th># s/c</th>
<th>Orbit Regime</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osiris Rex</td>
<td>2016</td>
<td>Lockheed, Littleton, CO</td>
<td>A. Calloway</td>
<td>Planetary</td>
<td>1</td>
<td>Bennu</td>
<td>N/A</td>
</tr>
<tr>
<td>ICON</td>
<td>2017</td>
<td>UCB</td>
<td>TBD</td>
<td>Heliophysics</td>
<td>1</td>
<td>LEO</td>
<td>TBD</td>
</tr>
<tr>
<td>NPP</td>
<td>2018</td>
<td>APL</td>
<td>TBD</td>
<td>Heliophysics</td>
<td>1</td>
<td>Heliocentric</td>
<td>N/A</td>
</tr>
</tbody>
</table>
SSMO Spacecraft

GEO: SDO

HEO: THEMIS, IBEX, Van Allen, MMS

LEO: AIM, Fermi, IRIS, RHESSI, Swift, TIMED

L1: ACE, SOHO, WIND

Heliocentric: Stereo Ahead

MAVEN

Heliocentric: Stereo Behind

Heliocentric: OReX
STEREO Solar Conjunction

• Background
 – Both AHEAD and BEHIND behind the Sun relative to the Earth and out of contact with the ground for a period of weeks in 2015

• Issue
 – Each Spacecraft has a Hardware Command Loss Timer (HCLT) that resets the spacecraft if commands are not received in 72 hours.
 – Conjunction Operations for Each Spacecraft lasted for weeks and resulted in multiple HCLT spacecraft resets with the instruments and the star tracker powered off each time.
FRB: Anomaly Cause/Sequence of Events

- On October 1, 2014, Spacecraft HCLT reset as expected during a pre-solar conjunction test.
- After reset, the Star Tracker did not output attitude solutions.
- As programmed, the Spacecraft used Inertial Measurement Unit (IMU) data for rate information.
- The IMU x-axis failed.
- Spacecraft likely spun up as a result of autonomous momentum dump in response to erroneous x-axis IMU rate measurements.
 - No telemetry exists beyond a single frame that shows the IMU x-axis failed w/ an erroneous x-axis rate
FRB Assessment

• Post-Anomaly State
 – The spacecraft is in a probable spin about Y-axis
 • Unknown rate
 • Unknown spin axis orientation
 • Likely in a cycle of power system collapse and partial recovery when SAs illuminated
 – Solar array illumination is
 • Governed by the final orientation of the spin axis
 • Seasonal as BEHIND moves about Sun

• Recovery efforts consist of commanding
 – Increased battery charge rate
 – Subsequently powering on the transmitter
 – If spin rate is too high, the spacecraft will be incapable of receiving commands until January 2020 as BEHIND-Earth range
 • Multiple commands need to be received to stabilize power system recovery
 • Jan 2020: the command rate increases due to decreased Earth range
Failure Review Board’s Recommendations

- DSN developed faster frequency segmented acquisition sequence
 - 18 one kHz segments
 - Send short critical commands multiple times each segment
 - Successfully tested on AHEAD on Sep 29, 2015
- Battery state of charge recovery
 - Increase battery SOC by removing loads
 - Procedure developed and tested on flatsat in April 2015
- Downlink carrier recovery
 - Power on TWTA, carrier only
 - Procedure developed and tested on flatsat in April 2015
 - Determine rotation rate and BLF
- Utilizing other antennas to detect downlink
 - Arecibo Observatory, Green Bank Radio Telescope, and Allen Telescope Array are being used when available
- Periodically perform recovery operations to maximize the chance of the Sun illuminating the arrays
 - From modeling, minimal solar array input when anomaly occurred (2014-274). Seasonal effect may increase solar array input.
STEREO Update

AHEAD

• Conjunction: 3/24-7/7/15
• Instrument Recommissioned: 12/31/15

BEHIND

• Contact lost 10/1/14 during Conjunction Operations Testing
• Contact regained on 8/21/16
• First Telemetry: 8/26/16
• Attempted Momentum Unload and Sun Pointing on 9/7/16
• Current State: Spinning with ~50 second period, Damaged Battery, Possibly Compromised Propulsion System, No Communication Since 9/20/16
• Plan Ahead:
 • Continue to characterize spin
 • Continue attempt to upload macro to protect battery
 • Telemetry if possible
STEREO BEHIND Orbit Timeline

Oct 2014 – Loss of Comm
Dec 2015 – Resume Recovery Ops
Oct 2016
Oct 2017
Oct 2018
Oct 2019
Oct 2020
Oct 2021
Oct 2022
July 13, 2023 – Closest Approach

STEREO AHEAD & BEHIND Motion in the Earth Fixed Frame

Courtesy of Dave Quinn